DETERMINATION OF *0*-GLYCOSIDIC BOND POSITION IN 6-C-GLYCOSYLGLUCOSYLFLAVONES BY MASS SPECTROMETRY

Marie Louise Bouillant*, André Besset*, Jean Favre-Bonvin† and Jean Chopin* Laboratoires de Chimie Biologique* et de Phytochimie†, Université Claude-Bernard, Lyon I, 69621 Villeurbanne, France

(Received 30 September 1978)

Key Word Index—MS; O-glycosyl-6-C-glucosylflavones; 6-C-glycosylglucosylflavones; hexa-O-methyl 6-C-glucosylapigenins; permethylation.

Abstract—2",3",4" and 6"-O-glycosides of 6-C-glucosylflavones can be differentiated by the MS of the hydrolysis products of their permethyl ethers.

In previous work [1, 2], mass spectrometry of permethyl derivatives (purified by TLC) has been shown to be useful in the structural study of O-glycosyl 6-C-glucosylflavones for indicating the nature (pentose, hexose or desoxyhexose) of the sugar linked to the C-glucosylflavone unit and for unambiguously differentiating the 2"-O-glycosyl compounds from all others from the absence of M-15 and M-31 peaks.

In the present work, we show that mass spectrometry of the hydrolysis products (again purified by TLC) of these permethyl ethers allows the complete determination of the position of the O"-glycosyl group.

The MS of the products derived from isovitexin O''-glycosides: 1 (5,7,4',3",4",6"-hexa-O-methylisovitexin; 2"-OH free), 2 (5,7,4',2",4",6"-hexa-O-methylisovitexin; 3"-OH free), 3 (5,7,4',2",3",6"-hexa-O-methylisovitexin; 4"-OH free) and 4 (5,7,4',2",3",4"-hexa-O-methylisovitexin; 6"-OH free) are listed in Table 1.

Table 1. MS data for hexa-O-methyl 6-C-glucosylapigenins 1-4: relative intensities % of the main fragments ($\ge 10 %$).

Compound	m/e	1 (2"-OH free)	2 (3"-OH free)	3 (4"-OH free)	4 (6"-OH free)
M ⁺	516	69	20	37	31
M-15a ₂	501		28	24	26
M-17	499	13	_		_
M-31 b ₃	485	15	60	100	97
M-45	471	38		_	_
M-47 c ₃	469	19	_		_
M-89 g ³	427			10	22
M-103 g	413	36	17		
M-105	411	19	_		_
M-119 f	397			_	12
M-121	395		_	10	_
M-131	385		_	11	23
M-133 f	383	10	_	****	
M-149 h	367		18	18	22
M-161 i	355	23		41	100
M-163	353	11	10		12
M-175 j	341	100	100	63	48
M-177	339	11	12		16
M-189	327	30	10	10	_
M-191 k	325	27	28	12	21
M-193	323	15	16	11	14
M-205 1	311	27	17	11	17

The characteristic differences observed are summarized below:

2"-OH	3"-OH	4"-OH	6"-OH
M > M-31	M-31 > M	M-31 > M	M-31 > M
M-175 ≽	M-175 ≽	M-175 >	M-161 >
M-161	M-161	M-161	M-175
M-103 ≽	M-103 ≽	M-89 ≽	M-89 ≽
M-89	M-89	M-103	M-103

These criteria remain valid for the corresponding hepta-O-methyl 6-C-glucosyl-luteolins derived from permethyl isoorientin O-glycosides as previously observed [1].

EXPERIMENTAL

Permethylation and acid hydrolysis were carried out using methods previously described [1, 3]. MS were recorded on an AEI MS 902 spectrograph to 70 eV. Temps. (sample and source in the same order) varied between 150 and 190°. Pure PM Oglycosyl C-glycosylflavones and their hydrolysis products can be obtained by TLC (Si gel) using CHCl₃-EtOAc-Me₂CO (5:1:4) and (5:4:1), respectively.

5,7,4',3",4",6"-Hexa-O-methylisovitexin (1) was obtained by acid hydrolysis of the permethyl ether of synthetic 6-C-neo-hesperidosyl acacetin [4].

5,7,4',2",4",6'-Hexa-O-methylisovitexin (2) was obtained by debenzylation of synthetic permethyl 3"-O-benzylisovitexin [6] and by acid hydrolysis of the permethyl ether of synthetic 6-C-rungiosylacacetin [5].

5,7,4',2",3",6"-Hexa-O-methylisovitexin (3) was obtained by acid hydrolysis of the permethyl ether of synthetic 6-C-cellobio-sylacacetin [5].

5,7,4',2",3",4"-Hexa-O-methylisovitexin (4) was obtained by acid hydrolysis of both permethyl ether of synthetic 6-C-rutinosylacacetin [5] and 6-O-tritylisovitexin [6].

Acknowledgements—MS spectra were registered in the Centre de Spectrométrie de masse de Lyon, Université

REFERENCES

- Bouillant, M. L., Besset, A., Favre-Bonvin, J. and Chopin, J. (1978) Phytochemistry 17, 527.
- Besson, E., Besset, A., Bouillant, M. L., Chopin, J., Van Brederode, J. and Van Nigtevecht, G. (1979) Phytochemistry 18, 657.
- Bouillant, M. L., Favre-Bonvin, J. and Chopin, J. (1975) Phytochemistry 14, 2267.
- Chopin, J., Besset, A. and Bouillant, M. L. (1977) C.R. Acad. Sci. Ser. C 284, 1007.
- 5. Besset, A., unpublished results.
- 6. Bouillant, M. L., unpublished results.

Phytochemistry, 1979, Vol. 18, p. 691. OPergamon Press Ltd. Printed in England.

0031-9422/79/0401-0691 \$02.00/0

KAEMPFERIDE 3-GLUCURONIDE FROM THE ROOTS OF CLEOME VISCOSA

JAGDISH S. CHAUHAN, SANTOSH K. SRIVASTAVA and SAVITRI D. SRIVASTAVA Chemistry Department, University of Allahabad, Allahabad-211 002, India

(Received 14 July 1978)

Key Word Index—Cleome viscosa; Capparaceae; kaempferide 3-glucuronide.

Cleome viscosa (Capparaceae), commonly known as 'Hurhur' in Hindi, is reputed for its medicinal properties [1, 2]. No previous chemical analysis has been carried out on the roots of this plant. In the present study we have identified a new glycoside: kaempferide 3-glucuronide in the root tissue.

EXPERIMENTAL

The air-dried powdered roots of Cleome viscosa were extracted exhaustively with hot EtOH, which on concn and keeping at 0° for 2 days deposited a white cpd, which is being further studied. The filtrate was diluted with $\rm H_2O$ and the soluble portion extracted with increasingly polar organic solvents. The MeOH soluble fraction gave a reddish coloured cpd, which on further extraction with absolute EtOH, gave the reported glycoside, mp 104-5°, crystallized from MeOH-petrol and shown to be homogeneous by PC (R_f 0.88 in n-BAW, 4:1:5 v/v) and TLC (R_f 0.32 in CHCl₃-MeOH, 7:3 v/v); yield, 300 mg (Found: C, 55.39; 4.20; —OCH₃, 6.49. Calc. for $\rm C_{22}H_{20}O_{12}$: C, 55.46; H, 4.20; —OCH₃, 5.51 %). $\rm v_{max}^{\rm EBr}$ 3375, 2975, 2870, 1700, 1680, 1410, 1370, 1225, 1170, 1020, 920 and 825 cm⁻¹. $\rm \lambda_{max}$ MeOH

265, 365; + NaOMe 285, 415; + AlCl₃ 276, 365; + AlCl₃-HCl 270, 360; + NaOAc 275, 390 and + NaOAc-H₃BO₃ 265, 320, 365 nm.

150 mg of the compound on hydrolysis with $H_2SO_4(20 \text{ ml}; 7\%)$ gave glucuronic acid (Co-PC) and kaempferide (kaempferol 4'-methyl ether), identified by mp, MS, demethylation, acetylation, IR, UV spectral data and NMR. As positive NaOAc and AlCl₃ shifts indicate that both the 5- and 7-hydroxyls are free, the glucuronic acid residue must be attached at the 3-position and emulsin hydrolysis of the glycoside confirmed that the sugar is β -linked.

Acknowledgement—S.K.S. thanks UGC, New Delhi, India for the award of a Junior Research Fellowship.

REFERENCES

- Chopra, R. N., Nayar, S. L. and Chopra, I. C. (1956) Glossary of Indian Medicinal Plants, p. 70. C.S.I.R., New Delhi.
- Kirtikar, K. R. and Basu, B. D. (1935) Indian Medicinal Plants 1, 183.